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ON SUBSONIC PROPAGATION OF THE EDGE OF SHEAR DISPLACEMENT WITH FRICTION 
ALONG A BOUNDARY SEPARATING ELASTIC MATERIALS* 

I.V. SIMONOV 

Analysis of the stress and velocity fields at the edge of a cut (and in particular 
of a transverse shear crack), gives rise to the problem studied here, of the asymp- 
totics of dynamic solutions near a moving point represented by the point at which 
the boundary conditions at the inner boundary of a piecewise homogeneous, linearly 
ealstic body, change. The sets of boundary conditions of slippage type with dry 
and viscous friction (or without friction) and adherence with (or without) restric- 
tions on the magnitude of shear stress of static friction type, are considered. It 
is shown that homogeneous solutions of the problems with similar mixed boundary con- 
ditions have nonoscillatory character and the singularity index depends on the 
velocity, friction coefficients and other material parameters. Velocity ranges are 
noted within which the stresses are singular or continuous. Results are given of 
the computations of the angular dependence of the shear stress at different rates 
of motion of the transverse shear crack edge, and the effect of changing the direc- 
tion of the maximum stress is studied. 

The nature of the singularity at the crack tips of normal separation and longitudinal 
shear type with smooth contact, propagating along the interface boundary was studied in /l/, 
where a review and bibliography were also given. 

1. Formulation of the probl_em. Let Qr,52,=R8 denote the regions occupied by homo- 
geneous elastic bodies 1 and 2, S = 8, 0 6* be the general boundary (surface) divided by 
the curve r(t) into the regions S1 (t) and Sp (t)(d is time), Q be the point belonging to 
the regular segment of the curve I'and surface S, let the velocity c and acceleration (d!dt)c 
of this point relative to the medium be bounded functions of time, and let Pi r denote the 
plane containing Q. We also assume that some correct initial formulation of the problem of 
the linear dynamic theory of elasticity exists for the system of bodies in question and dif- 
ferent conditions of contact are postulated on S, and s, so that I' is a singular line. 

We construct the asymptotics of the stress (and velocity) field as F-+O(F iS the 
distance from Q in plane P) at a fixed moment of time, without solving the problem completely. 
To do this we transfer the problem in the usual manner, to the moving Cartesian coordinate 
system X,(n = 1, 2, 3) with the origin at the point Q, so that the axes X1 and X, lie in the 
plane P and axis X1 belongs to the plane tangent to S at the point Q, XJ i_ P. Following "the 
microscope principle" /2/ we extend the coordinates by means of the transformation 

z1 = eX,, x, = eXZ, x3 = 6x3 

and pass, in the problem A, written in coordinates r,, formally to the limit as e-0,6-+ 

0, e/S --* 0. This yields the limiting problem A,containing a truncated and disintegrating 
system of Lam4 equations describing plane steady motions of an elastic medium in the x = ~1, 

Y = 52 coordinate system moving with the instantaneous velocity c(t) = (CT 0). The geometry 
of the small neighborhood of the point Qexpanded to infinity represents a plane unbounded re- 
gion with a rectilinear boundary separating the two bodies, and a point on this boundary at 

which the boundary conditions change. Thus the problem of investigating the field singularit- 
ies qualitatively reduces to solving a set of limit (canonical. fundamental) problems /Z-5/. 

We shall restrict ourselves to the study of subsonic mode and fix only such instants of 
time, at which the wave fronts carrying infinite discontinuities in the time derivatives of 
the displacements of up to the second order, do not intersect the small neighborhood of the 

point Q. The latter is generally necessary for the correctness of the passage to the limit 

mentioned above, although not compulsory: an example in /2/, p-133, shows that diffraction of 
the shock waves does not influence the nature of the singularity, it is only the dependence of 

the intensity coefficient on time that leads to formation of a break. If in view of this we 

exclude from our considerations the characteristic values Of the velocity C (the velocities 
of the surface waves) in Ti, and 4. Then it becomes physically certain that the solution to 
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the limit problem separates out the principal part of the asymptotics of the solution to the 
problem A,. From the mathematical point of view the problem A, is obtained, in particular, 
by replacing the perturbed, hyperbolic type operator, by an elliptic one representing the 

principal part of the first operator relative to the asymptotics sought. The operator con- 

tains all higher order derivatives in the variables in question. In addition, the analogs of 
the problem A, with single type boundary conditions have a discrete spectrum with simple eigen- 
values and we can therefore speak of a regularly perturbed problem /6/. 

We solve the canonical problems using the functions in complex form, in order to seek, 
in addition to the homogeneous solutions, also the inhomogeneous ,ones. We impose on the func- 
tion sought, namely on the stresses c,,' . . . and mass velocities u,' at .y = O,x>O pnd x<o, 
the following idealized conditions and certain of their 

lo. Total contact (adherence) 
combinations: 

Z". Total contact 

30. Slippage with 

[u,l = 0, [%?I = 0 

with the magnitude of the shear 

[l&l = 0, Iu,J = 0, Io1zj I + 

dry friction 

stress restricted 

k0uz2j < 0 

[zh] = [%a] = 0, I(112 I + kd = 0, [Ull UJ > 0 
40 . Slippage without friction 

[ZLJ = la,,1 = 0, (Jllj = 0, [UJ # 0 

So. Slippage with viscous firction 

[u,l = [o,,l = 0, OIZj = n &I, Iu,l # 0 

In addition to Z"-5o we have the condition of edge closure indicating the 
tion forces between the edges 

%' Q 0 

The energetic condition supplementing the conditions lo-5' (in particular, 
does not permit the creation of mechanical energy at a point) has the form 

o<F<m 

Here the square brackets denote a jump in the value of the Parameter during 

absence of attrac- 

(1.1) 

this condition 

(1.2) 

the passage from 
the upper to the lower edge of the crack [II = f'(z, 0)-f*(s, O),k", k, q are coefficients of 
friction, F is the energy flux into the point x = 0, j, m, I= 1, 2; and the superscript accomp- 
anying the function denotes the medium. We note that condition (1.2) was used in the proof 
of a certain uniqueness theorem /7/ and in discussing the problems of propagation of shear 
cracks (homogeneous material) /8/. Conditions (1.1) and (1.21 limit the admissible singulari- 
ties of the solution and single out from the initial problem a unique solution out of the set 
of solutions generated by the basic conditions. 

In the stationary problem of the dynamic theory of elasticity (plane defonnation,subsonic 
mode) it is expedient to represent the functions sought in terms of the analytic functions x,,,j 
resembling the representations of L.A. Galin /g/ 

(1.3) 

U*S~= 4’ Re @jP?j [Xlj (Zlj) - XIJ (Zaj)] - fi,‘Xzj (Zlj) + BljssjXzj (zsj)} 

~1’ = ti Re &jXlj (Zlj)-BjBzjXlj (Z*j)-BjX*j hj)fS&jX~j bj)} 
3 I 

U*’ = + Im t- Bl j82 jXlj (zl j) + BjXlj tz2j) + BjSl jXZj (zl j) - BI jXZj (Z8j)l 

Bmj = l/1 - C'/Ct , Bj='/2(1+B2j)2~ aj=1 +Blj*-Bj 

Rj = /3ljp*j - fij2y zrnj = 5 + iP,jy, m, i = 1, 2 

Here cl1 and czj are the velocities of the expansion and shear volume waves, pj is the shear 
modulus, Rj are the Rayleigh functions, (CRY > 0 are the roots of the equations R, (c) = O), 
and the last subscript a-companying the coefficients denotes the medium. The representations 
(1.3) determine the velocity field with the accuracy of up to a constant (with the accuracy 
of up to the motion of the system as a rigid body). 

At the boundary in,] = z and from (1.3) we obtain 
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ul*j = Im xIj (I), ulJ = c Re {b,j%l’ (z) t ajx2’ (s)} 
uz2j = Re x2’ (I), Us’ = -C Im {UjXlj (5) 7 bIjx,j (.r)) 

(1.4: 

j,n2=1,2 

Before passing to the concrete analysis, we derive some general corollaries. The fol- 
lowing estimates follow from (1.2): 

1 Xmj 1 < const . 1 z i-'/$, 1 z 1 -+ 0 (j, In = I, 2; z = Z*j) (1.5) 

Equations [a,,] = [uzzl = 0, characteristic for all conditions lo- 5' will be satisfied lf 

~1~(~)=-~x12(z), ~zl(?)=xz*(z), Imz<O l1.G) 

Conversely, conditions [ulz] = [czz] = 0 and (1.5) yield (1.6) with the accuracy of up to the 
nonessential (not affecting the state of stress) entire functions. Taking into account Cl.41 
and (1.6) we write the formulas for the velocity jumps at y=o, which shall be required 
later 

IuJ = c (q Re x1' + d Re x2’), [u,l = -C (d Im x1' + PIIUX~‘) 11.7; 
d = a, - a,, P = b,, + b,,, q = 4, + b,, 

The condition [u,] = 0 common to lo- 5O, gives rise to arelationconnnecting the functions x1' 

and xa' 

x*'(z)= -$-X1'(z)+P,(z), Imz>O (1.8) 

where P, denotes an entire function of the fori 

P, (4 = & wn, Ime,= (1.9) 

Cwing to (1.6) and (1.81, the problem can be reduced to the Hilbert problem with discon- 
tinuous coefficients for a single analytic function x1' /lC/. The problem is obtained by sub- 
stituting (1.41, (1.6)-(1.8) into the still imperfect combinations of the conditions lo- 5O. 
Such a splitting of the problem ensures that the solutions are monotonous (nonoscillatory) in 
contrast to'the combinations of the boundary conditions of the separation - complete contact- 
trpe /l/. 

2. Slippage with dry friction - adherence6 Let us assume without loss of generai- 
ity (the sign of c is not discussed) that conditions 1 or 2O hold to the right of the point 
z = 0 at the interface boundary, and 3O to the left (problems 3O-lo and 3O- 20). The bound- 

are conditions for x1' are 

l ReQ=- $-P,(Z), s>o (Po=-qP,) 

sgn[ul] ImxZ1- k$-RexI1=E PO(~) V=d*- Pq) 

(2.1) 

It is natural to assume that the sign of the velocity [u,] of the crack appearing in (2.1) does 
not change in the small neighborhood of the point at which slippage commences, the neighbor- 
hood belonging to the physical space and extended afterwards to infinity. We shall determine 

this sign, as well as the signs of the remaining quantities, from the sign of the principal 
term of the asymptotic. As usual, we seek the complete solution of the problem (2,1! in the 
form of a sum of the general solution of the corresponding problem with homogeneous conditions, 
and a particular solution of the inhomogeneous problem, bearing in mind (1.5) /lo/. The final 
results are 

xl'= iz&PN(z)- (+* ik) PO(z) (2.2) 

xz' = - $ izhPN (z) + (I* i $) P, 

h = h, 3 -& arctg (p/(/cd)) (problem 3"--1") (2.31 

h = h,, if h,>O;h=l+h,, if h, (0 (problem 3"-2" (2.4) 

In (2.2)-(2.4) the upper or lower signs are chosen according to whether [ulI>O or IUJ < 0 
when x(0. To make the function zk uniform, we made a cut along the positive part of the 

real axis. The condition (1)h = 1 fixes the branch of .zl at the upper edge of the cut. The 

eigenvalue h in (2.3) lies in the interval - l/z < h < l/z (k # 0), and in (2.4) in the interval 
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I)(&( 1 (k# 0, p # 0). In the problem X0- 2O h is positive, since the third of the condi- 

tions 2O must be satisfied. 
In contrast to the calssical formulation of the Hilbert problem /lo/, no restrictions are 

imposed here on the behavior of the functions at infinity, and the solution therefore contains 

the product of the canonical solution and a polynomial of infinite order. The real unknown 

constants N,, a,, (n = 0, 1,2,. . .) are found from the external boundary conditions of the initial, 
plane, stationary problem, which were neglected in the present formulation. When more general 
problems are considered, namely the non-stationary and (or) three-dimensional problems, only 
the sum of first principal nonzero terms of the asymptotics of the general solution of the 
inhomogeneous problem for bl(n = 0) will be meaningful, since the contribution of the neglect- 
ed part in the equations and boundary conditions will be small only when compared with those 
terms. 

Let us write the first two terms of the asymptotics of the functions at the boundary as 
z-+0, using (1.4), (1.7) and (2.2) 

crz3 - N02'T ko,,, alsj N uo, yj = 0 

upj - c (db,,lp - a,) Nod, x > 0 

W ‘-No ~os(nh)jz/~T kuo, u,ljm $Nc, sin(nb)Jsp+u~ 

(2.5) 

[Ull - %NOsin(~h)IzjX, 

u$ - + (dbll - pal) No cos (A) 1 z I”, I < 0 

We have deleted from the right-hand sides of (2.5) terms of order 0 (x) in the stresses, and 

0 (1) in velocities. Next we check the supplementary conditions, and since the solution (2.2) 
- (2.5) contains, in fact, the recursive inversion, we avoid it by showing explicitly the 
parameter limits within which one or another type of solution is valid. To do this, we make 
the following assumptions A and B concerning the sign of [a]. 
A. [u,]> 0. Moreover, in the problem 3O- 2O we must observe the condition (1.1) for 12 1-C OQ, 

and take into account the fact that h> 0; in the problem 3'-lo we observe the condition 
(1.1) for x(0 and remember that the sign of k can vary. From (2.4), (2.5) it follows that 
the inequality in 2O is valid if k<k”, which is usually true. We arrive at the following 
systems of inequalities: 

u0 < 0, cpSN, > 0 (problem 3”-2”) (2.6) 

pd c 0, cpSN, > 0, q, c 0 (problem 3” - I”, h > 0) (2.7) 

pd> 0, cpS < 0, No > 0 (problem 3"-I", h< 0) (2.8) 

The conditions (2.6)-(2.8) specify a range of velocities c (and the signs of the coefficients 
No and a,) in which the upper indices should be taken in (2.2)-(2.5). 

B. [u,]< 0. Analogously to the previous case we obtain the following systems of inequal- 
ities: 

u0 < 0, cpSN, < 0 (problem 3"-2") (2.9) 

u. < O,pd> O,cpSN, < O( problem 3°-lC,h> 0) (2.10) 

pd< 0, cpS<O, No < 0 (problem 3"--1", h< 0) (2.11) 

Lower indices must be taken in conditions (2.9)-(2.11) and solution (2.2)-(2.5). From (2.8) 
and (2.11) it follows that a singular solution of the problem of propagation of shear crack 
iproblem 30-10) exists within the range of velocities c defined by the inequalities 

cps < 0 (2.12) 

otherwise (cpS> 0) the solution is continuous at the point 5 = 0. Analysis of (2.12) will 
be given below. 

Let us write the formulas for the principal variable of the part of the field asymptotics 
within the regions, in the polar coordinate system z,] = r,jeieml (r,,> 0, 0 < (-l)j+*e,, <n) 
obtained from (1.3) and (2.2) 

4nj = %mj&j sin (hemj), B,j = x,j&j cos (kemj) (j, m = I, 2) 

Xii = Ri’(hj +(- l)‘+‘pjd/p), Xtj= RJ'(pj + (- l)'+'fl,$/p) 
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3. Slippage without friction - adherence (problems 4o-l",40- Z">. AS IG 
Sect.2, we arrive at the solution (2.2), (2.5), (2.13). in which we must put k = --'!, (problem 
40-lo) and h = I/* (problem 4O- 2O). In the combination 40-l" we have a nonzero flow of 
energy into the point 5 = 0 (N, # 0). To calculate it, 
follows (k = 0, h. = -I/*) 

we rewrite the asymptotics (2.5) as 

c,z' - NOx+, us2j - (Jo, UIj = 0, x > 0 (3.i) 

cl,*’ = 0, U?Zj - - LL + (Jo, [u,] - CS.VD 

P I 2 I+ -p' Xc0 

The restriction pdNo >0, so far unique, follows from (1.1). 
The essential difference between (3.1) and theanalogous expressions for the homogeneous 

material /8,11/ is represented by the singularity azzj(x, 0) at x < 0, which vanishes, when 
the difference between the materials is removed (d-+ 0). All distributions (2.131, (3.1) now 
transform into the corresponding formulas for the shear crack in a homogeneous material /ll/. 

To compute F we use of the simplest methods of calculating this quantity with help of 
the intensity factors u,*j and [u,j] [ll] , and obtain the formula 

F = --ncSNo2i(2p) (3.2) 

Condition (1.2) and (3.2) together yield the inequality (2.12). When cpS>O, we must put 
No = 0. This removes the singularity, and the field asymptotics will now contain terms of 
order CJ (I) and 0 (?I*). Identical results are obtained by passing in (2.2)-_(2.5), (2.13) to 
the limit as k-0, and retaining the conditions (2.6)-(2.11). In this sense the problem 
will not be degenerate when k = 0. From the point of view of the theory of brittle fracture 
however, it is degenerate: when k+O we have F = 0, while when k = 0 and condition (2.12) 
holds, we have F#O. Results of Sect.4 impy that when the materials are identical, then the 
cases k -0 and k#O do not differ greatly from each other even in the sense of the theory 
of fracture. 

Let us analyze the condition (2.12) for the case cal<cal<c,,< cpa (materials with sim- 
ilar properties). In this case the following distribution of the unique positive roots of 
the equations S(c) = 0 and p(c)= 0 is possible, the roots denoted by cs and cP: 

Crn<Cp<CS<Q% CRI<CP<CR~<CS<CZI 

It can be shown that when CR2 -+cR1, c~~--+C~~, pLp-+pl, then the root es determining the velocity 
of the Stoneley wave /12/ tends to c21* In this, and the other case, the inequality (2.12) 
is true when 

0 d c < $7 cs cc < CZl> --cs < c < -cp, (c I f CRJ 

Fig.1 

Let us now consider the case when the materials have sufficiently different properties 
csL <c2, (cs* (c,,. The following variants are possible: 

a) czl ( cP < es, then cpS < 0 when 0 < c < ~21. C P Cm 

b) cR, < cp ( c2, ( cS, then cpS < 0 when 0 < c < $7 c # ca1l -cs1 < c < -cp 



The angular distribution of shear stress 
ility of crack branching /l/. The Fig.1 

ing to the formula 
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is of interest in connection with potential possib- 
shows the plots of the function t(O) computed accord- 

drej (r, e) 
Z=---_-['/*(I + filj)CIj-p*jClj]sin(20) + @lj&j -BjDZj)cos(2e) 

Ql’ (r7 0) 

r -_ (2” + y y , CI= Arc tg (Y/Z), (Cmjv Dmj)=Xmjk 
i 

,cjin B,j 
e 

2 ,cos+ J 

r -= ( 1 +tgze 
‘mj i +Bfnjtgae 1 ‘I’, e,, = I &j s arc tg (flmj tg 8), ) 8 I<“/2 

(-l)j+‘n.+&j, qz<lel<fi 

The formula was obtained from (2.13) at h = --‘I, and contains dimensionless parameters p = 

CL&, P = !%/I% (relative density), vj (Poisson's ratios) and c* = c/c,,. The values of p equal 

to 1, (identical materials), 0.75, 0.5 and 0.1 correspond to the curves l-4. The remaining 
parameters for the curves 'c = z(e) are fixed p = 1, v 1 = v, = 0.3 (which corresponds to caI/czl z-z 

0.9274), c* = 0.91. By a dot-and-dash line is shown one the symmetric branches. r(e), for a 
homogeneous medium in a quasistatic case (c+ = 0.1). Solid lines in the lower left part of 
the Fig.1 show the maximum values of lZl in the interval O<O<n/2, and dashed lines corres- 
pond to the interval n/2(8 <n. The table gives extremal values of T denoted by r,,(n= 1,2, 
3,4) and attained, respectively, at the points tl,,,lying in the intervals o<e,< a12,n12<e,< 
n, --n/2( I&< 0, --n < ea< --n/2. A gap indicates that the maximum is attained at the boundary 6= 
o and is equal to unity. We have here vI= 0.3, and the condition that the medium 1 is not 
the high velocity one is observed c,,,~<c,,,~, m=l, 2. We note the relation (w)'/' = cIIIcII. 

Table 1 

w=i; p-1 c=o.m; e1 I w-0.2; PJ 

c.30.82 1 0.89 1 0.91 1 0.95 1 088 1 0.825 1 03 1 0.88 1 0.91 

v-1: P-O.5 I w-1.5: p30.83 I &-0.33;p-1.5 

c.dUF3 1 0.81 1 0.@25 1 0.95 1 0.89 1 0.925 1 035 1 O.E9 ( 0.925 

:t -:::: / -:::i ) -% 1 -::it 1 -::g 1 -kit 1 --1.17 ]-1.24--1.53 

Computations show that the maximum of (5) is displaced deeper into the region beginning 
from the value of velocity equal to ~~~0.77 (3 = 0.3), and is first attained when 6 ~3~~14. Next 
(c,% 0.80 when p = p = 1, C*Z 0.86 when p = 0.75, cI z 0.92 when p = 0.5) other extrema appear exceed- 
ing unity in modulo, and when c,-cRl/cal, then the maximum at the point 6=6, becomes dominant 
(see Fig.1 and Table 1). The value of the angle e1 is changed from zn/4 to ~1.36 when c*= 
0.925 and the angle ep remains nearly equal to 3~114. 

The above results show that asymmetry leads to appreciable reduction in the effect of 
the stress concentration a,~' in directions different from the direction in which the cut 
propagates, and practically vanishes in the case of materials with sufficiently differentwave 
velocities CU. On the other hand, if the medium 2 is rigid, then 

x11 = r/L (1 - &)I-‘, x21 = (1 - M-1 
and the problem of Sect.2 and 3 lose the resonance when C = cs1, When v1 is varied, then all 
changes depend essentially on the change in position of the resonance value of the velocity 

c. When k,q<l, we have h= -l/* + O(k), --‘/, +0(q) in the singular variants of the pro- 
blems with friction, and the results for z(0) will be close to those obtained above. 

4. Slippage with viscous friction - adherence (problems 5’-lo, 5’- 2’). 
As in Sect.2, we obtain the solution 

x1' (i) = i+PN (z) - -$ P,(z), y.zl=$- izhPN (2) +P, (z), Im 2 > 0 (4.1) 

h = h, s arctg [pl(qS)l ( problem j"-1") 
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h = h,, if cps > 0; h = 1 f h,, if cpS <O( problem 5"--2") 

Formulas (2.13) remain in force and we must put Jc=O in (2.5). 
the problem 5O- lo is realized with (2.12) observed, 

The singular solution of 
just as in the cases discussed before. 

5. Degenerate cases. If the velocity c coincides in modulo with one of the values cRlr 
CRs. cd, cp, c,, CS (Cdr cq are roots of d(c) = O,q(c) = 0), then the problems discussed in Sect.2-4 
becomes meaningless. The formula (2.13) implies that the values 1 c 1 = CR~,C~~,C~, are resonant, 
stationary-problems have no solutions and the solutions of the corresponding nonstationary 
problems (c = const) have no limit as t+ x /13/. 
cp is explained in /14/. 

The physical meaning of the roots cP and 
They represent the velocities of the characteristic (surface) waves 

under the condition of smooth contact between two different elastic bodies, and of non-slip- 
page with possible detachment ("comb"- type condition) respectively. 

When 1 c 1 = cd7 cpr c6 # the degeneracy has a different character. Stationary solutions may 
exist, although the solutions must be inspected once again since some of the coefficients ap- 
pearing in the boundary conditions for xl1 and x81 vanish or become infinite. 

Let us consider these cases, assuming without loss of generality that cR1<cH9. 

lo . c-cd. The root c=cd can exist in the intervals O<c<cR1 and ci?s < c < Cal sf %a 
(provided that the latter intervals exist). This can be shown by inspecting the signs of d(o), 

d (c,& and d(c) with c-c~&- 0, cs, -JcOo, and conditions of existence of the roots can be obtained 
in the form 

Moreover, d(c)=0 for any c, provided that the bodies 1 and 2 have the same properties. The 
physical meaning of the roots cd is, that at these velocities of the crack edge the piecewise 
homogeneous bodies exhibit in some respect the same properties, as the homogeneous bodies. 
Formulas given below show cearly that the solutions at the cut for the homogeneous and piece- 
wise homogeneous bodies show no qualitative difference. 

The solutions of the problems 3°-10,3"-2" at d= 0 have the form 

x1' = in+PN (2) F ikP, (2)~ Xal (2) = P, (2). Im I > 0 

where N,=O in the problem 3o- 20. 
A qualitative change in the stresses and velocities at the line of slippage takes place 

in cases when N,#O(cpN,<O correspond to the upper indices and cqNo>O to the lower indices). 

q,j - r kq,, n-j - a,, [I+] = -cqNo 1 I) f ., u2- = 0 

The stresses and the velocity uzj were found to be bounded in this case at the cut, and we 
see why the problem admitted the eigenvalue A. = --'Is with the energy flux F = (n/2)cqNoa (cq> 0 
represents the condition of existence of solution with N,+O; when cq<O, N,=O). The power 
generated by the friction forces (now restricted) has become integrable also at h= -V1. 

Let us now put d=O in (4.1) (case of viscous friction). It is interesting tonote that 
this case b, =--arc@ ](cV?)-I]>--'i, and F = 0 when c = cd (piecewise homogeneous medium) and any 

1 c~<c~~.~c~#c~~ (identical materials and o,:(z=O) ceases to be singular. A singularity with 
the index h>--'I, ensures the integrability of the force of viscous friction propoertional 
to the integral of the product [~,]o~~j[iS]. We recall the approximate character of the friction 
laws used valid in restricted intervals of the relative slippage velocities and pressures. At 
large values of '~*,j (dry friction) and [vJ (viscous friction) the resistance to shear unit, 
apparently remain restricted. For this reason the solutions discussed above must be regarded 
as some intermediate asymptotics in the regions near the singularities where the linearized 
friction laws can still be used. On the other hand, we can assume, that the approximate re- 

lation czJll = y0 = const holds on the slippage line quite near the singularity. Then the solu- 

tion of the corresponding canonical problem will consist of the solution of the homogeneous 
problem without friction (Sect.3), and the particular solution 

1,' = ire, xn' = -ip-‘dto 

Thus we have obtained a solution to the canonical problem of propagation of an infinitelythin 
half-strip of plastic flow (Tresca flow condition) along the boundary separating two elastic 
materials. 

20. C = e*. Considering the boundary value problems of Sect-Z-4 once again, we arrive at 
the solution (2.21, (4.1) in which we must put P,(z)~0. The constant term a,,=Q vanishes 

(we recall here the physical meaning of the root cs). 
3O. C= cs. Here [u,] vanishes when z<O, and this imples slippage. This contradicts the 

condition adopted in 3O- 5O, no solutions exist and cs is the resonance value of the velocity 
c. 
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